-
a

-

NASA TT F-983L4

NASA TT F-983k4

SOLUTION OF THE EQUATION OF VERTICAL FLIGHT OF A
ROCKET BY THE GRAPHTC -MATHEMATTICAL. METHOD

Porfirio Becerril B.

N66-14382
;5 (TH}U)

{PAGES)

(CODE) .
Of |

(CATEGORY)

FACILITY FORM 602

(NASA CR OR TMX OR AD NUMBER)

Translation of "Solucidn de la ecuacion de vuelo vertical
de un cohete por el metodo "Grafico-Matematico"
Congreso Panamericano de Ingenieria Mecanica y Electrica,
Mexico, 1965

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC) p? UO
Microfiche (MF) . (1-9{0

# 653 July 65

NATTONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON DECEMBER 1965

1



THE PANAMERICAN CONGRESS ON MECHANICAL

AND ELECTRICAL ENGINEERING

Subjects Research

SOLUTION OF THE EQUATION FOR VERTICAL FLIGHT
OF A ROCKET ACCORDING TO THE GRAPHICAL-

MATHEMATICAL METHOD

MEXICO

1965

By
Porfirio Becerril E,,

Engineer

SECRETARTAT OF COMMUNICATIONS AND TRANSPORTATION




~
SCLUTION OF THE EQU%ITION FCR VERTICAL FLIGHT CF A ROCKET IN THE ATMOSPHERE

Table of Contents

Page

Chapter I General Considerations 1
Chapter II Propelling Force 4
Chapter III Gravitational Force 10
Chapter IV Air Resistance 1
Chapter V Vertical Flight without

Air Resistance i
Chapter VI Vertical Flight with

Air Resistance [7
Chapter VII Solution of the Equation for

Vertical Flight by the Graphical-

Mathematical Method o 0



INTRODUCTION

The research topic entitled “SOLUTION OF THE EQUATICN FOR VERTICAL
FLIGHT CF A ROCKET ACCORDING TO THE GRAPHICAL-MATHEMATICAL METHOD" is
one of many studies undertaken on the design and construction of
SCT rockets using solid and liquid fuels, for the Secretariaf of
Communications and Transportation,

All these personal studies will be published when the writer has
the time to do so since they represent scientific and technical studies

on rockets in accordance with the limited resources available to us,



SCLUTION OF THE EQUATION FOR VERTICAL FLIGHT

OF A ROCKET IN THE ATMOSPHERE

CHAPTER I

General Considerations

To determine the flight characteristics of SCT-1l and SCT-2 rockets—jégf
the point by point calfiglation of the trial and error method was used
until the flight equation was satisfied. This is a quick method when
we have an idea of the rocket's behaviour., But if we wish to follow a
logical, mathematical order, then we must solve the differential flight
equation within finite boundaries,

In order to facilitate study, we shall consider only the rocket's
vertical motion in the atmosphere; in another study we shall discuss the
more general case of the rocket moving horizontally,

Newton's laws are the basis of this study since they explain the
phenomena to which bodies at rest and in motion are subjected,

Newton's Second Law, The rate of change of momentum of & body is
directly proportional to the acting force and the momentum takes place in
the direction in which the force acts, Theequation is F = Ma, From this
equation we can also say that the acceleration produced by the force applied
to the body is directly proportional to the magnitude of the force and

inversely proportional to the mass of the body,
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In Figure 1 a rocket is shown as a body on which various forces [@ﬁ__
act with the result that motion in full flight is affected., The forces
acting on the rocket are:

\LD

F/'fhe propelling force which produces the vertical

acceleration motion from the gases escaping from

the exhaust nozzle,

o
-

- Force due to the earth's attraction, called gravity.

The value assigned to it is ¥ x g in which M is

3

the mass at the time the mathematical analysis is
conducted, and g is the gravitational acceleration,
This force tends to prevent the rocket from rising.

D; The resistance force of the air, within the atmospvhe)e

which also hinders the free movement of the rocket

= T
P o

l .\% in the atmosphere, In Spanish this is also called

l Aerodynamic or Retarding Resistance; in English the
I

word “drag" is preferred,

At'aéy time when the propelling force F of the combustion gases acts,
the effective force Fe which produces the rocket's acceleration 2 is
assigned a value according to the second principle of Newton's Law,
Fe =Ma = F -W-D (1)

Later we shall examine equation (1) for 21l values given at time t
after the rocket's ignition.

The component parts of a jet-propelled rocket are:
1. The propulsion system,
2. The mass of propellants (the fuel plus the oxidizer),

3. Dead space of the rocket (body).



4., The payload (explosives or material to be transported).
During propelled flight the total mass decreases, If M0 is the mass
of the missile before ignition, m the mass of the propellants (fuel plus

the oxidizer), and m the mass of the body and payload, then we have:

During flight, the mass of the propellants progressively decreases.[ZQN

We shall assume in this study that the consumption per unit of time is
constant which means that the combusion gases will leave at the same
velocity =~ V}; we shall discuss this velocity in greater detail later.
Vé varies according to altitude for equal rates of consumption for fuel
and oxidizer per unit of times

If we make:

w = propellant consumption per second,

x(%)=the percentage or fraction of total propellant

mass consumed per unit of time, then we have:

2 W
Xlnp -
w=g x mp
(weight/second)
-%?\— =xmp At any time t, mass M of the rocket will be:

M=Mg = x mpt (slug in the US) (2)
If we differentiate equation (2), then we get the
first derivative which is the relationship showing how the mass of the
rocket varies with respect to time,
My=m+ m, (slug/unit of time) (3)
The negative sign indicates that the mass decreases

as time goes on,

(J 2



CHAPT E>R I1
PROPELLING FORCE

The thrust F of a rocket is the reaction experienced by a body due //5£~
to the action of high velocity of the materialj in this case, the exhaust
gases,

In dynamics the word "momentum" is defined as the product of the mass
times its veldcity; In the case of the gases escaping at high speed from
the exhaust nozzle, the momentum of many uniform particles streaming at a
uniform velocity. Thus, the gas stream can be expressed im the momentum
of a solid body of the same mass and velocity.

When the pressure of the medium is equal to the pressure of the
gases egcaping from the exhaust nozzle, this is called thrust and
is expressed as follows:

F‘W V-WV'

g g |

Nowadays it is possible to get a high combustion efficiency with
respect to the ideal heat of the chemical reaction, with values from
9% to 99% being attained,

The internal efficiency or the relation between the kinetic energy
at the exhaust nozzle outlet and the thermal energy of the chemical

reaction is defined as:
] zl (w) vf 3 vi2 |
it = g = i
W] TSI ()

in which nint is the internal efficiency,

Vf'the effective velocity of the escaping gases
QR the reaction heat per unit of propellant

J the mechanical heat equivalent,

1



The propulsion efficiency will be: VAR

If V is the velocity of the rocket

2V
n, = FV = V.
" RNEL (v v
—_ i~ 2
7T 3 | l+(vf—)
The total efficiency will bes
n‘." FV [ viv
w Qg+ 1w \? g QpJ + V2
Z g g
Al
" . |
L4y 2
o VT (7)

The specific impulse, also known as specific thrust, is defined

by the following formula:

S . - —
w g (8)

It is the force exerted by a unit of propellant per second,

We have presented the foregoing considerations in order to indicate
clearly how the maximum propellant force can be atteinedjnevertheless,
in summarizing matters on efficiencies and atmospheric conditions, the
following factors must be taken into consideration:

In the combustion chamber there are losses due tos
- improper mixing causing incomplete combustion (1%);

loss of heat through surrounding surfaces (2%);
energy lost through the exhaust (57 to 27%):

loss of residual energy in the exhaust gases (20%), /

~/



It is possible to deduce from this that from 0 to 50% of the rocket's
propellant energy can be utilized,
With regard to the variation in propellant force due to altitude
or variation in atmospheric pressure, we use average velocities in our '
calculations, but in order to have an idea of how these variations occur,
we shall advance the following theory:
If pl = the internal pressure of the combustion chamber,
as well as the pressure in the fhfc\t;

P, = pressure at the exhaust nozzle of the combustion

chamber;

p_ = pressure of the atmosphere or of the exterior medium,

then by applying the momentum principle to fluids, we get the following

equation:

.

Fi=v2m+(p2-p3) Ay= vy ¥ (pp _p3) A3

—

9 9)
The term (p2 - pB)AZ is the thrust which acts in the same direction
and on the same outlet area A2 of the exhaust nozzle,
Also, V, equals V' , the exit velocity of the exhaust stream,
To find the effects of‘thrust at various altitudes, let us compare
the thrust with the pressure by inside the combustion chamber,
By applying the principle of the conservation of matter to the

gas stream of the exhaust nozzle of the jet propulsion motor, we get:

w2 A
m=owa=lg Vg =Y (10)
vg Vo ;>7
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in which Ag is the throat or most constricted section of the exhaust nozzle,

v_ is the gas flow velocity in the throat, and
2
Vg is the specific volume in cubic feet per pound in the throat,

If we substitute the values in equation (9), we get:

v
2 +(py - p3) A2
Vg 2 - P3 an)

2
g

From equation (11) the ideal thrust is determined, and by applying
an experimental or empirical factor A , Wwe obtain the effective thrust,
If F_ equels AN F; and
if we call
Ag the throat ares,
CF the thrust efficient,

12 the pressure inside the throat, then we have

Fe = 'F: ACFp] Ag . (12)
The connection factor varies hetween 0,92 and 1 and depends on the
situation in the exhaust nozzle,
With respect to the thrust coefficient, by associdgion of

equations (11) and (12) and applying the principles of thermodynamics,

vhich we shall not go into here, the following value is obtained:

\
9 k+ 1 p k=l
\2 ) k=1 1...(2) k

k - ] k + 1 p]

-n
11

+ P2-P3 M) ()
P A

\y4



In this equation we note that: P, is the pressure inside thei;ﬁ;_
combustion chamber; p, is the pressure of the combustion gases at the
exhaust nozzle outlet; and P3 is the atmospheric pressure of the
surrounding medium.

A good exhaust nozzle must be designed to give a straight jet
of gases, This will make P, = p3 or the exit gas pressure almost equal
to atmospheric pressure, but this can only be accomplished within certain
limits since during flight P3 varies according to the altitude, Since
Py tends to decrease in the atmospheric layer there is greater expansion
in the exhaust nozzle and therefore the thrust increases; that is, when

py decreases, C. increases,

F
. . S

This means that the thrust Fe =Fz A CF P19
varies in proportion to the Cp .

Figure 3 shows graphically how the atmospheric pressure varies at

different altitudes above sea level,
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Fig, 3, Variation in atmospheric pressure in relstion to altitude

above sea level,




Pressure By in the combustion chamber of liquid-fuel engines
remains constant since the injectionsystem is designed for automatic
control, that is, an equal amount of fuel is used at any given time,
This is not the case for solid-fuel rockets since the entire space
occupied by the solid fuel is the oombustion chamber, Therefore,

calculations must be made within definable limits,



" CHAPTER III
Gravitational Force /

This force, as previously stated, is designated as W: it is due
to the earth's attraction and is equal to M x g,

M is the mass at the moment when the analysis is undertaken;
g is the gravitational acceleration which, in our aerodynamic study of
any rocket,is the earth's resistance to anything leaving its surface,

Mass M will have the value of M, before the rocket's combustion is
initiated; it will be m after combustion of the promellants or fuel (m ).

by

We gave the variation of this mass in equation 3,

dM =X My,
dt :
The gravitational acceleration g varies with altitude; at sea level

g = 9,8066 in the latitude of Ecuador where the earth's radius Ro = 6,387

kilometers. <In the US system g, = 32,2 feet/secz, and RO = 3963 miles, )
In order to determmine the acceleration due to gravity at any height "h"

above sea level, we start with the known principle that it varies with the

square of the distance from the center of the earth, If g, is the

acceleration on the surface of the earth with a radius of R,y then

g at height "h" will have the value:

g= 0o (_.22.)2- g ( RF? )

(1)

0



CHAPTER IV

4
/

NG

Air Resistance
The force of the airk resistance, which is called "drag" in
English, is the force which opposes the free movement of a rocket
within the atmosphere: it is found according to the formula:
D=l/2p s Cp v2 (15)
‘n which s~ is the density of the air,
S is the largest cross:seetion of the rocket
CD t?e retardation or drag coefficient, and
V the flight velocity of the rocket.

Equation (15) is the classical one expressing aerodynamic resistance
but only when the vehicle moves vertically in the atmosphere, It gives
the resistance which depends on: the density of atmospheric air which
varies with height above sea level; the maximum cross section of the rockets
the square of the velocity with which the rocket changes its positiong
and the drag coefficient which is related to the Mach number during flight,

The drag coefficient CD encompasses all the resistance effects
produced in the nose cone,the. external surface friction of the rocket,
and in the rocket's tail assembly, Without going into too much detail,
wWe can give a summary explanation of each resistance effect, since our
main purpose is solving the flight equation.,

The resistance effect of drag in the nose cone is due to the air
slowing down in the vieinity of the rocket's nose cone, In that area, it
produces much greater pressures than those of the surrounding atmosphere
and very high temperatures result which force us to use materials theréfﬁm
that are resistant to high temperatures., Air slippage of the dividingw B
boundary layer of the atmosphere surrounding the rocket

produces external surface friction, The resistant drag effect at the

17



tail is caused by the separation of the air stream at that point,
Gr@wﬁm7 a reverse-acting suction,

The effect at the nose cone and that on the rocket's exterior surface
are more difficult to evaluate: nevertheless, the jet action has a great
influence on the tail drag, because during the time the jet is blasting,
there is no suction, From this we can say that there must always be
propulsion while inside the atmosphere,

At high supersonic speeds the drag at the nose is much greater
than all the friction effects due to surface and tail drag. This means
that the nose must be kept at the proper angle to decrease resistance,

various books and pamphlets

As for the drag coefficient CD,Ahave been published with graphs showing
how it varies in relation ho the Mach mumber. These data were used in
aerodynamic calculations or liquid-fuel rockets SCT-1 and SCT-2, as
well as ?g;e solid-fuel rocket SCT-S55. In the gravh shown as Fig, 4,
the CD values are given for rockets, for a rocket shaped like the V2 bomb,
and for cylindrical-shaped rockets,

In Fig, 5 we can see how the density of air varies at different

altitudes above sea level,
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CHAPTER V
Vertical Flight Without Air Resistance 114
The procedure for resolving the aerodynamics of a rocket's
vertical flight is based on an analysis of the nature of flight
‘ both with and without air resistance.
For flight without air resistance, equation (1) may be written as:
F, = Mo:F-W:M%_:'_ |
Therefore, the instantaneous velocity is:
‘ v %/ F - W ) dt
\' M

Making the necessary substitutions, we cet:

V.

WV.-MQ \V; ] | .
vyg | dt - w . i g dt vV = xmp '__g]dt
M _ [9 M Mo-xmp:E g

If x is this share of m_ which turns ner second, then we may write
o)

X = l/tC in which t 1is the cut-off time or the time required for the
combustion of the mass m_: if we integrstc this last equation we get
b
C
(16)

1 - m ‘ '
—P___tl=-gt+V
Mg te ? °

V= Vi Ioge' |

| in vhich v is the ideal velocity without air resistance st any moment
within the combustion time and in which V 1is the starting velocity
o)
when the combustion engendered speed in the rncket.

The velocity reached once combustion tekes nlace, occurs when t = tc

so that we may write the following equation:

ve =+Vj loge (]';S‘L) - gtet Voo (17)
o




A

The height which the rocket could reach without encountering L]

any air resistance wsuld be:

dh Mg
vz gr :-Vi Log, - 1- - gt+ V,
h:-Vi Loge[l_ me ]df-/dt+V/it
$ Mg te

o
By integration we obtain the helght at any moment during which

the propulsion or combustion is still going on. We call this height h ,
. D

' 2
ho=l Vi Mote vilieg |1- m 4 Vit- 1 gl"+V t+h
P p- i e ] ____F___-+ | - o o (13)

P : o c
In this equation, h0 is the height which the rocket 2ttzins when
combustion starts] the maximum height is h, which is reached when the

combustion terminates, The maximum height is attained when t = tc

which is the cut-off time or time when the combustion ceases,

. M * m
he= to|Y—0 _ Vijloge (1=—f—)+ Vi te-
o)

m
P
| (19)
g t.24 Vot_+h
7. ¢
A4LLO0UT Taklng 1nto consicderation the resistance of air, only

cravity can slow down the rocket,
“n the dynamics of firing missiles of a certain velocity and which

are ejected vertically, the missiles travel in accordsnce with the
formula h = v2 « In our case, when combustion ceases the rocket is

2g
regarded at that time as a missile fired at speed Vc; gravity slows it down
until velocity C is attained., In this period of time, the rocket goes to
height h .,
. g
Without air resistance, the rocket reaches a maximum altitude of:

hmax = he + hg (20).



v 16
having the following values N9 = —;——g—, (21)
£ we substitute the values in equation (20) and simplify it, then

we et the following formula for maximum height:

hmax=

wird -e can further simplify by making m = M =-m

2 12
VLt Vil loa. m + Vit
bnax = 1 ¢ Logg '}:';]\'; + 2g| [ Oge _M._o] c

(%) |

M, (22)
The maxiwum desirable height to be reached will always devend on

the V},the exit velocity of the combustion gases which is directly reclated

to the duration of the combustion and in this study is called cut-off time tal

when mp/MO has maximum values greater heights are reached, Tt must be

constantly borne in mind that mp/Mo approaches unity, that is the rocket

must be lightweight but provide great capacity for propellants (mD).



CHAPTER VI
Vertical Flight with Air Resistance L/é_b
“hen analyzing the air resistance, its retardation effect on
the motion is indicated in equation (1) and a substitutinn of values

is made, q .
v .
Fe:MCt-F-W"D=M'a}—.. dVHF-VI://\-DJ“

The velncity of the rocket in the atmosphere will he:
m_ V;: 2 C
\ v =5 -xmfdt - [gdt _/ﬂv 5 D dr
o -
P M, -x mpt',)

If we simolify this equation and show the combustion time:

1 P2
dt +V,

.
t
c

In the last equation Vo is the launching velocity before combustion
starts, that is, the velocity of the rocket  when combustion starts.
In the equation,CD is a variable because with changing height and
velocity the Mach number increases and this accounts for CD having
different values as seen in Figure 4, The same is true for the density of
air 23 this obliges us to integrate for finite times during which CD
and/o are considered constants since they vary only little in value.

We assign an average value to g, which is the gravitational acceleration

in the atmosphere,



With regard to the integration in the foregoing equation for l i
obtaining the maximum velocity during propulsion (or what we have been
calling vc), its value is determined by integration within the limits of

0 and tc; and by substituting m.D/MO for y, we get:

cSs rle l p 2
D 22N g

Mg -m -
vc--Vi Loge (_-Q—I\X;-—Q-Q =g t'C -MO ]_ Yf
e — 0 t
The value of ! f v2 ]
1 -yt
0 ——
te

is obtained by a graphic integration, and values are given for velocity v.
All textbooks on aerodynamics choose a certain letter for it and we indicate

thus, the value of the cut-off velocity will be:

M,y -m CDS 2
Vc"'Vi Loge (__Omo___E) -g tc - B; '_M;—-l- Vo (23)

Lie Cul=oLL HEeLYIlL,y OLf LI LeLyilL aLualineud wien cumuuscion ceases,

it as El;

will be: M (Mo =My ) | 2
. (Mo _=Mp) lo ~ g tco+ Vo t¢
h = Vi o1 ~(=o Loge o Vi
CpS
+ ho - Bg I?/\
o
(24)

te
A
in which B, =/B]df
0

The maximum heicht reached is determined as was done be.fore,) with the
exception that we now take into account the air resistance, After

combustion ceases, the rocket continues to fly like a missile with
. v 2 i |
a starting wvelocity of V.3 due to inertia it will reach height hg = —-—-‘;)‘_L—-—
g
and therefore the maximum height to which it rises is:



2 2
. M, _m .
hmax = he + hg = _XL.__ Log -2~ Pi4 V| Fe l -+ Loge
9 29 e Mo
2
Mo - Vv -V .
(Mo mp) o =+ hy o V. Log (Mo_mp) -GS B, + B Vo - VI
Mo Mo
Mgy -m CRS
Log ° p "B'l fc-B]Z D
M, 23 Mg (25)

When great heights are reached the resistance due to air can be
ignored. Then equation (25) will become simplified; then, too, we may consider
Vo and also ho as being zero, which is usually the case when launchings are
made from the earth., The solution to equation (25) is quite complicated and
more so when CD énd‘/o vary with the altitude attained. All these very
complicated details led us to solve the equation of flight by another
procedure without loosing sight of the dynamics of the problem,

We had to present the mathematical development outlined above
so that the reader would better understand this "“graphical-mathematical"

method of solving the equation,



CHAPTER VII
Solution of the Zquation for Vertical Flight by

the Graphical-Mathematical Method

1., Climbing with Propulsion /13
The solution of the dynamic equation of vertical flight was prompted
by the desire to obtain a method which allows us to analyze graphically
and mathematically the change of the ideal velocity vy (without air
resistance) as well as the effective velocity Ve (bearing in mind the

air resistance) with respect to time t. From the plot, in Fig, 6,

subsequent values of the effective velocity may be derived,

Vv
Vi
Ve
Vi
|y
Viu /' Ae
| /
lVel I
| at |
| I
0 £, t, T

Fig, 5 The Velocity-Time Curves during Combustion,
The ideal velocity when there is no air resistance is given
as follows:

Vi = .-F-.—:_..V.v_df
M



The effective velocity is the real one in the atmosphere /[XO
since it take dinto account air resistance, It is determined from

the equation:

At a given time t, the loss of velocity due to air resistance
is found from the difference between velocities at the ideal and actually

existing conditions:

In the analysis to be undertaken,graphs for the "vit" and the
"vet" are plotted at the smallest possible measurements so that we may
consider the effect of the drag coefficient CD according to the Mach
numbers obtained, If we assume that within such finite limits the drag
force is constant, we may write:

(26)

The integralyfgg is a modulus or parameter which varies as the

function of time befause M is the mass in the moment the analysis is

undertaken, ‘We call this modulus Qt and we may therefore write it:

If we substitute y = m /M _ and integrate, we gets
/Mo

t. m
Q, =z~ =L  Jp—

-

(27)

¢ .
c yt



m

By simplifyine and substituting ¢‘= te \\ (21
we get: Q; = Lo Mo 27
f —L—-q) %l Mo =7 @7

The loss of velocity during a finite interval is:

M
Cve =y = — Dtc _Yt v _D L °
Vi =ve = DGy G Loge ( 1 e ) =_'_5, og( Mo-'Pf) (28)

If we undertake in equation (15) the substitution:
Ki==—/°'s Cp (29)
then we get for the drag force:
D=Ky v2. (30)
In Fig., 6 the ordinates are showmn cs intersecting the curves
of the ideal velocity (vi) and of the effective velocity (ve) during
the finite period of time At lying between time t; and time t,. We
assume that the differences for the air densities and the drag
could be ignored,

2
In the plot of figure 6 we have drawn a parallel of

coefficients CD for times tl and t

to for the purpose of stating a relationship

Vel = Vx Vil - M&a

with the subsequent velocity for t2 .

Between times tl and t2 we assume that there is an average drag

force D, and we assume that only the velocity changes between Vo and

Voq § therefore, we get: )
vVes + Ve 2 Ky 2
—~—) - (vez +vey) © (31

i
From plot 6 for time t,, e =et:

Da=Kjy (

Vig = Veg = (Vi) = ve]) + {vx = vey) = DQ2

If ve substitute values and stanlify, we cet:

K 2
(Vi vy) - (veo + vei) = —-]ng- (vez ¥ vey)



This can be rearranged to show that we have to deal with a quadratic

[ 3
equation, or one of the second degree:
KiQ 2
—]—zrz— (Vep+ ver)” = (vez +ve)) - (vit+vy) =0
This means that the effective velocity at tiwme t2 is:
Veg = S1aVie K Q) (Vil + VX = ve)
Ky Q2 (32)

—_— s

2

On the basis of equation (32), in order to find the next or

subsequent velocity value véz we must nlot the ideal velocity-time
curve so that we can drarg j?parallels v to then determine
Vil T ovx
l

the value of Vo Using tun. /in equation {(32), we can determine the

1 and t2

we calculate the values of Kl and QZ because Kl will vary according

effective velocity of the rocket at time t2. Then between t

to height and velocity. We calculate K. in point t. and QZ in roint t

1 1 2"
In this way, we are always realisticj in case more exact calculations are
required, it would be necessary to repeat the calculations in each point
to determina h2, and to determine more correctly and to find a first
velocity v92 for the Mach number which furnishes the value of the drag
coefficient, Close to the sound barrier where the Mach number is unity,
we will get the greatest drag coefficient,

The effective height reached is determined with the average values of

v . and v _ , derived from the respective plots,
e

el 2

When a liquid-fuel rocket is analyzed, the amount of fuel burnefper
second is constant, but for a solid-fuel rocket the flight analysis is more
complicated because the propellinz force varies between a minimum and a

meximum, This means that the thrust varies as a function of time




(its change with respect to time is determined in a test stand) since
the exit velocity of the gases v; also varies,
} (23

For the analysis of a solid-fuel rocket during the time of flight,
we must write up a table with convenient time intervals, and we must
when doing this be duly aware of the effect of the sound barrier, i,e,
when the Mach number is equal to 1,

Equation (32) encompasses the dynamic effect during combustionj
if we determine this we will realize that the behaviour of the rocket
is different, When using this equation, it is always necessary to
follow the accumulative system of the tables since it must be used

tetween two points i.e,, the Mo must be calculated when it is used again,

In a solid~fuel rocket zccording to equation (27-B):

1 Mo . m
Qr"‘g";‘ L°9°(Mo ) )i ¢"=Tf— is variable,

If L = the length of the solid-fuel cylinder,

di- the internal diameter of the core before the
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the diameter of the core at any given time.
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el the linear radial combustion velocity of the
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= the specific weight of the solid fuel,
then we may write forthe mass of fuel burned up at any given time:

b = T dive 2
g

which means that the inrccantaneous mass of the rocket is:

- - 7r dL
M= M, - bt =Mo-_”%é_
When combustion ends, the propulsion force is F = O; thereafter the

rocket continues to rise due to inertia, but it has to overcome two resistant



forces: gravity and air resistance, It will stop rising when
the effective flight velocity is v, = C.
Let us now analyze flight- conditions without propulsion, i,e.,

\

for F= 0.

Ve

| ¢
L\

t t.

Fig. 7. The velocity-time curve for ascent without propulsion,

t

Now the rocket no longer is carrying fuel, My =0
Mo = mp+ m=m
The mass is then constapt and at any time its value is m which
is dead weight, Under these conditions, also, the rocket's initial
velocity is v,, the cut-off velocity, So, for any given time, we
may write:s
Vi Ve® H— ! (33)
When the rocket continues to c¢limb to high altitudes due to
inertia, the value of air resistance D grows smaller and smaller
because the air density has a limit value of zero and the effective
velocity will drop to zero. Thus, when calculating the value D, we

shall not operate with an averagevelocity but shall take the

velocity of the next point,




Substituting the values in az. 4. (2% 1+ .J-epplying it in point‘ﬁluwe get:

) D = K Ve22 ‘ [
K1 (ve? . 2 L
Vi2 T Vep T ""m—e‘)~t ° l;l_f (Ve2)2 + (ve2) = vig= 0

The foregoing is ¢ second-degree equa-inn and its solution is:

. "K"'.—‘_\
UL = AR
€2 ie (34)
= t
‘n whichs Ky =——»‘5‘2 CpS

Bquation (34) is valid when v, =V S V.

Accordingly, we calculate the values of the effective velocity
"ve": altitudes or heights "h" are determined. From these new altitudes
we obtain new values for air density.

A teble, set up in columns, will facilitate plotting the velocity-
time graphs; inside the atmosphere we assume that the acceleration due
to gravity (g) is constant, There is no doubt that in high altitudes,
with high power rockets of long propulsion periods, the effect of
atmosphere becomes secondarys liquid-fuel rockets do not attain
the greatest velocities within the atmosphere,

Now using equation (34), we analyze the flight until the highest
altitude due to inertia is attained, At that maximum altitude,

theeffective and ideal velocity reaches zero (0O).

Let us first simplify equation (34).
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if we integrate the equation for the ideal velocity and keep in

mind that v, = when t = O, we get:

vio z=ve -gt ‘ (35)
\J 4K, B
v =14\l +=pr——— (v¢ - gt) -t
32- 2K]t ) .
P | (36)

3. The Rocket Falls into the Atmosphere
The aerodynamic analysis starts when'h is at its maximum and
when v; and vy = 05 the initial velocity is zero but when descent
begins, at any instant only external forces will act; i,e,, gravity
will move the rocket and the drag or air resistance will oppose the falling

motion., We may thus write:

dv
F-Mu:-a-t——nw D

For the rocket's descent, the ideal velocity without air

resistance:

w

Vi = J—dt

The effective velocity or that with air resistance is expressed:

v.=/W-D) g4
e L e e
M

In both cases, mass I = m is constant, which simplifies analysis,

The loss of velocity due to air resistance is seen as:

D
m

t (37)

vi-ve:

e
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Fig. 8. The Velocity-Time Blot for Descent without Propulsion,
the decrease in velocity is -- if we accept that

)3

During time t2

in the graph (vel - vX) is parallel to (v.ll-v o

Vi2 =Ve2 o ( Vig - Vx) + (v, - ve2)

Ky 12
= (viy 'Ve])+(Vx'vez)= T (ve; +Ve2)2

Kyt 2
2 (veyF vea)” + (vei 4 ve2) = (vi1 +vx) 2 0
and therefore the velocity 2t time tq ise
| Kt
v - -Li\l+—-m-_(vil+vx)—vel
€2~- Ky 1o (38)

A .
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On the basis of equation (38),‘flight graphs may be plotted; accordingly,
as the effective velocities are calculated, the altitudes are determined,
as athliweizz- new values are obtained: ' , the air density, the Mach number, etc,

If more precise calculations are desired, after the v 5 and the h2 are deter-
e

mined, then we may give k, a new value since in this case it is practically

1

kz. By using a table with as many columns as necessary, results are

gathered which indicate how the rocket will move aerodynamically during

its return to earth,

AN



AG
“Wresented here is the graphical-mathematical theory of how a
rocket will behave inside the atmosphere, In the atmosphere above
supersonic speeds, temperatures above 350° C are reached at the
rocket's nose, This forces us to use materials highly resistant
to those high temperatures,
Space rockets traveling inside the atmosphere have low velocities
in comparison with the velocities required to put vehicles into orbit,

In theoretical studies on this topic, air resistance has been minimized,

but the cost of the fuel to overcome that resistance cannot be ignored.
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k [/s/

Porfirio Fecerril B., Engineer

Technical Adviser to the Officer in Charge

of the Secretariat of Communications and Transportation;
Professor at the College of Mechanical and Electrical Engineering
of I.P,H.-5.E2.P;

Coordinator of the Standing Committee on Transportation of

the College of Mechanical and Electrical Engineers,

Officer in Charge of Design and Construction of the

SCT-1 through SCT-55 Rockets for Solidand Liquid Fuels

in the Secretariat of Communications and Transportation.




